4.6 Article

NK cell protease granzyme M targets α-tubulin and disorganizes the microtubule network

期刊

JOURNAL OF IMMUNOLOGY
卷 180, 期 12, 页码 8184-8191

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.180.12.8184

关键词

-

资金

  1. NIAID NIH HHS [R01 AI 044941-07] Funding Source: Medline

向作者/读者索取更多资源

Serine protease granzyme M (GrM) is highly expressed in the cytolytic granules of NK cells, which eliminate virus-infected cells and tumor cells. The molecular mechanisms by which GrM induces cell death, however, remain poorly understood. In this study we used a proteomic approach to scan the native proteome of human tumor cells for intracellular substrates of GrM. Among other findings, this approach revealed several components of the cytoskeleton. GrM directly and efficiently cleaved the actin-plasma membrane linker ezrin and the microtubule component alpha-tubulin by using purified proteins, tumor cell lysates, and tumor cells undergoing cell death induced by perforin and GrM. These cleavage events occurred independently of caspases or other cysteine proteases. Kinetically, alpha-tubulin was more efficiently cleaved by GrM as compared with ezrin. Direct alpha-tubulin proteolysis by GrM is complex and occurs at multiple cleavage sites, one of them being Leu at position 269. GrM disturbed tubulin polymerization dynamics in vitro and induced microtubule network disorganization in tumor cells in vivo. We conclude that GrM targets major components of the cytoskeleton that likely contribute to NK cell-induced cell death.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据