4.6 Article

Ghrelin protects against experimental sepsis by inhibiting high-mobility group box 1 release and by killing bacteria

期刊

JOURNAL OF IMMUNOLOGY
卷 180, 期 12, 页码 8369-8377

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.180.12.8369

关键词

-

向作者/读者索取更多资源

Sepsis, a life-threatening complication of infections and the most common cause of death in intensive care units, is characterized by a hyperactive and out-of-balance network of endogenous proinflammatory cytokines. None of the current therapies are entirely effective, illustrating the need for novel therapeutic approaches. Ghrelin (GHR) is an orexigenic peptide that has emerged as a potential endogenous anti-inflammatory factor. In this study, we show that the delayed administration of GHR protects against the mortality in various models of established endotoxemia and sepsis. The therapeutic effect of GHR is mainly mediated by decreasing the secretion of the high mobility box 1 (HMGB1), a DNA-binding factor that acts as a late inflammatory factor critical for sepsis progression. Macrophages seem to be the major cell targets in the inhibition of HMGB1 secretion, in which GHR blocked its cytoplasmic translocation. Interestingly, we also report that GHR shows a potent antibacterial activity in septic mice and in vitro. Remarkably, GHR also reduces the severity of experimental arthritis and the release of HMGB1 to serum. Therefore, by regulating crucial processes of sepsis, such as the production of early and late inflammatory mediators by macrophages and the microbial load, GHR represents a feasible therapeutic agent for this disease and other inflammatory disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据