4.6 Article

Lipoxin A4 Counterregulates GM-CSF Signaling in Eosinophilic Granulocytes

期刊

JOURNAL OF IMMUNOLOGY
卷 181, 期 12, 页码 8688-8699

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.181.12.8688

关键词

-

资金

  1. National Institutes of Health National Heart, Lung, and Blood Institute's Proteomics Initiative [N01-HV-28184]
  2. National Institute for Environmental Health Sciences Center [P30-ES006676]
  3. National Institute of Allergy and Infectious Diseases [P01 AI062885]

向作者/读者索取更多资源

Eosinophils are granulated leukocytes that are involved in many inflammation-associated pathologies including airway inflammation in asthma. Resolution of eosinophilic inflammation and return to homeostasis is in part due to endogenous chemical mediators, for example, lipoxins, resolvins, and protectins. Lipoxins are endogenous eicosanoids that demonstrate antiinflammatory activity and are synthesized locally at sites of inflammation. In view of the importance of lipoxins (LXs) in resolving inflammation, we investigated the molecular basis of LXA(4) action on eosinophilic granulocytes stimulated with GM-CSF employing the eosinophilic leukemia cell line EoL-1 as well as peripheral blood eosinophils. We report herein that LXA(4) (1-100 nM) decreased protein tyrosine phosphorylation in EoL-1 cells stimulated with GM-CSF. Additionally, the expression of a number of GM-CSF-induced cytokines was inhibited by LXA(4) in a dose-dependent manner. Furthermore, using a proteomics approach involving mass spectrometry and immunoblot analysis we identified 11 proteins that were tyrosine phosphorylated after GM-CSF stimulation and whose phosphorylation was significantly inhibited by LXA(4) pretreatment. Included among these 11 proteins were alpha-fodrin (non-erythroid spectrin) and actin. Microscopic imaging showed that treatment of EoL-1 cells or blood eosinophils with GM-CSF resulted in the reorganization of actin and the translocation of alpha-fodrin from the cytoplasm to the plasma membrane. Importantly, alpha-fodrin translocation was prevented by LXA(4) but actin reorganization was not. Thus, the mechanism of LXA(4) action likely involves prevention of activation of eosinophilic granulocytes by GM-CSF through inhibition of protein tyrosine phosphorylation and modification of some cytoskeletal components. The Journal of Immunology, 2008, 181: 8688-8699.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据