4.8 Article

A three-dimensional computational model of H2-air premixed combustion in non-circular micro-channels for a thermo-photovoltaic (TPV) application

期刊

APPLIED ENERGY
卷 152, 期 -, 页码 47-57

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2015.04.068

关键词

Micro-combustion; Thermo-photovoltaic; CFD; Heat recirculation; Figure of Merit

资金

  1. Government of Abu Dhabi

向作者/读者索取更多资源

Wall temperature uniformity and enhancement in a micro combustor for thermo photovoltaic (TPV) applications have attracted considerable attention from researchers in recent years because of their direct impact on efficiency and feasibility of desired energy conversion. In this regard, numerous experimental and numerical studies in micro-combustion application have been conducted and reported. However, most previous studies have been focused on geometrical configurations limited to planar and circular channels. It is therefore of interest to investigate the impact of different channel geometries on wall temperature distribution and energy conversion efficiency. This study addresses flow and flame behavior in a micro-combustor. By utilizing the well-established computational fluid dynamics (CFD) approach, the effect of geometrical parameters on the flow behavior and wall temperature is examined and evaluated. In order to improve the productive capability of the computational model, several steady state Reynolds Average Numerical Simulation (RANS) turbulence models alongside with different reaction rate formulations are evaluated. The results indicate that Reynolds Stress Model (RSM) with Eddy Dissipation Concept (EDC) provide the best quantitative prediction. The developed model is employed to investigate the effect of inlet velocity on flame structure and outer wall temperature. Furthermore, the effect of reactor cross sections, including circular, square, rectangular, triangular and trapezoidal, on the wall temperature is also evaluated. The results show that the [GRAPHICS] wall temperature is increased with an increase in the inlet velocity. Trapezoidal and triangular cross-sections are found to have better performance in terms of Figure of Merit (FoM), a parameter used in this study to gage thermal and hydraulic performance of a micro-combustor. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据