4.5 Article

Climate Change Impacts on Jordan River Flow: Downscaling Application from a Regional Climate Model

期刊

JOURNAL OF HYDROMETEOROLOGY
卷 11, 期 4, 页码 860-879

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/2010JHM1177.1

关键词

-

资金

  1. German Federal Ministry of Education and Research (BMBF)
  2. Israeli Ministry of Science and Technology (MOST)

向作者/读者索取更多资源

The integration of climate change projections into hydrological and other response models used for water resource planning and management is challenging given the varying spatial resolutions of the different models. In general, climate models are generated at spatial ranges of hundreds of kilometers, while hydrological models are generally watershed specific and based on input at the station or local level. This paper focuses on techniques applied to downscale large-scale climate model simulations to the spatial scale required by local response models (hydrological, agricultural, soil). Specifically, results were extracted from a regional climate model (RegCM) simulation focused on the Middle East, which was downscaled to a scale appropriate for input into a local watershed model [the Hydrological Model for Karst Environment (HYMKE)] calibrated for the upper Jordan River catchment. With this application, the authors evaluated the effect of future climate change on the amount and form of precipitation (rain or snow) and its effect on streamflow in the Jordan River and its tributaries-the major water resources in the region. They found that the expected changes in the form of precipitation are nearly insignificant in terms of changing the timing of streamflow. Additionally, the results suggest a future increase in evaporation and decrease in average annual rainfall, supporting expected changes based on global models in this region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据