4.5 Article

Precipitation, Recycling, and Land Memory: An Integrated Analysis

期刊

JOURNAL OF HYDROMETEOROLOGY
卷 10, 期 1, 页码 278-288

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/2008JHM1016.1

关键词

-

资金

  1. NSF [EAR 02-33320, EAR 02-32616, EAR 02-35575]

向作者/读者索取更多资源

A synthesis of several approaches to quantifying land-atmosphere interactions is presented. These approaches use data from observations or atmospheric reanalyses applied to atmospheric tracer models and stand-alone land surface schemes. None of these approaches relies on the results of general circulation model simulations. A high degree of correlation is found among these independent approaches, and constructed here is a composite assessment of global land-atmosphere feedback strength as a function of season. The composite combines the characteristics of persistence of soil moisture anomalies, strong soil moisture regulation of evaporation rates, and reinforcement of water cycle anomalies through recycling. The regions and seasons that have a strong composite signal predominate in both summer and winter monsoon regions in the period after the rainy season wanes. However, there are exceptions to this pattern, most notably over the Great Plains of North America and the Pampas/Pantanal of South America, where there are signs of land-atmosphere feedback throughout most of the year. Soil moisture memory in many of these regions is long enough to suggest that real-time monitoring and accurate initialization of the land surface in forecast models could lead to improvements in medium-range weather to subseasonal climate forecasts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据