4.7 Article

Long term (1960-2010) trends in groundwater contamination and salinization in the Ogallala aquifer in Texas

期刊

JOURNAL OF HYDROLOGY
卷 513, 期 -, 页码 376-390

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2014.03.033

关键词

Total dissolved solids; Nitrate; High Plains; Hydrochemical fades; Water quality; Agriculture

资金

  1. Texas A&M AgriLife Research

向作者/读者索取更多资源

Although numerous studies have expounded on depletion of the Ogallala aquifer, very few researchers have studied groundwater quality therein which relates to the 'usability' of available groundwater resources. The objective of this study was to elucidate regional trends in groundwater quality and salinization in the Ogallala aquifer, underlying 49 counties and two Groundwater Management Areas (GMA 1 and 2) in Texas, on a decadal scale between 1960 and 2010. Contrasting groundwater quality distinguished GMA 1 (northern Ogallala) from GMA 2 (southern Ogallala), and shallow wells (depth <50 m) from deep (>50 m) wells. The GMA 2 was characterized by pronounced groundwater nitrate (NO3-) contamination accompanied by elevated levels of sulfate (SO4-), chloride (Cl-) and salinity (TDS), marked by an abundance of mixed cation SO4-Cl and Na-Cl facies. In contrast, Ca-Mg-HCO3 and Ca-HCO3 fades prevailed in GMA 1 with substantially lower salinization, SO42-, Cl- and NO3 contamination. In shallow wells, more abundant in GMA 2, about 80% and 32% of observations exceeded the United State Environmental Protection Agency's Secondary Maximum Contaminant Level (SMCL, 500 mg L-1) for total dissolved solids (TDS) and MCL (44 mg L-1) for NO3, respectively in the 2000s(2000-2010), with progressive increases in both parameters since the 1960s (1960-1969). Majority (>60%) of the shallow observations since the 1980s (1980-1989) have exceeded the natural background of 11 mg L-1 of NOy indicating anthropogenic sources, The NO contamination was more apparent in domestic wells indicating substantial human health risk. Groundwater salinization in this aquifer resulted from a combination of natural (e.g. upwelling of highly mineralized groundwater from the underlying formations, seepage from playas and saline plumes, and evaporative enrichment) and anthropogenic processes (irrigated agriculture and hydrocarbon exploration activities). Natural processes were largely aggravated by anthropogenic practices such as lowering of hydraulic heads in the Ogallala aquifer due to prolonged irrigational pumping, inducing cross-formational flow from underlying highly mineralized older formations (Edwards Trinity (High Plains)) which led to groundwater mixing between the formations and rise in salinity levels in the Ogallala aquifer over time. (c) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据