4.7 Article

Constraining snowmelt in a temperature-index model using simulated snow densities

期刊

JOURNAL OF HYDROLOGY
卷 517, 期 -, 页码 652-667

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhydrol.2014.05.073

关键词

Snow density; Snow modelling; Melt factor; Degree-day factor; Warm maritime snowpack dynamics; Snow depth

资金

  1. Australian Research Council [FT110100576]
  2. Australian Research Council [FT110100576] Funding Source: Australian Research Council

向作者/读者索取更多资源

Current snowmelt parameterisation schemes are largely untested in warmer maritime snowfields, where physical snow properties can differ substantially from the more common colder snow environments. Physical properties such as snow density influence the thermal properties of snow layers and are likely to be important for snowmelt rates. Existing methods for incorporating physical snow properties into temperature-index models (TIMs) require frequent snow density observations. These observations are often unavailable in less monitored snow environments. In this study, previous techniques for end-of-season snow density estimation (Bormann et al., 2013) were enhanced and used as a basis for generating daily snow density data from climate inputs. When evaluated against 2970 observations, the snow density model outperforms a regionalised density-time curve reducing biases from -0.027 g cm(-3) to -0.004 g cm(-3) (7%). The simulated daily densities were used at 13 sites in the warmer maritime snowfields of Australia to parameterise snowmelt estimation. With absolute snow water equivalent (SWE) errors between 100 and 136 mm, the snow model performance was generally lower in the study region than that reported for colder snow environments, which may be attributed to high annual variability. Model performance was strongly dependent on both calibration and the adjustment for precipitation undercatch errors, which influenced model calibration parameters by 150-200%. Comparison of the density-based snowmelt algorithm against a typical temperature-index model revealed only minor differences between the two snowmelt schemes for estimation of SWE. However, when the model was evaluated against snow depths, the new scheme reduced errors by up to 50%, largely due to improved SWE to depth conversions. While this study demonstrates the use of simulated snow density in snowmelt parameterisation, the snow density model may also be of broad interest for snow depth to SWE conversion. Overall, the study responds to recent calls for broader testing of TIMs across different snow environments, improves existing snow modelling in Australia and proposes a new method for introducing physically-based constraints on snowmelt rates in data-poor regions. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据