4.7 Article

Variations in spectroscopic characteristics and disinfection byproduct formation potentials of dissolved organic matter for two contrasting storm events

期刊

JOURNAL OF HYDROLOGY
卷 481, 期 -, 页码 132-142

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2012.12.044

关键词

PARAFAC; Humification index (HIX); Hydrograph; Fluorescence; Storm

资金

  1. National Research Foundation of Korea
  2. Korean Government (MEST) [NRF-2011-0029028]
  3. USDA Cooperative State Research, Education, and Extension Service (USDA-CSREES) [SC-1700427]

向作者/读者索取更多资源

Changes in disinfection byproduct (DBP) precursors during storm events have not been intensively studied to date despite their dramatic impact on downstream drinking water supplies. For this study, variations in dissolved organic matter (DOM) spectroscopic properties and DBP formation potentials (DBPFPs), and the correlations among these various parameters, were investigated in river water samples collected under two contrasting storm event conditions (a strong summer storm versus a weak fall event). Fluorescence excitation-emission matrices (EEMs) combined with parallel factor analysis revealed that a combination of two humic-like components (C1 and C2) dominated the EEM data of the storm samples. Measured DOM characteristics and DBPFPs varied over a wider range during the more intense summer storm, exhibiting higher values of specific ultraviolet absorbance and C1/C2 ratio at high flow conditions. Variations in the fluorescence index were less pronounced during the two storm events. The spectroscopic changes were well explained by the input of terrestrial DOM sources from the surrounding catchments during the storms. Different trends of the formation potentials for trihalomethanes and haloacetic acids on the recession limb of the hydrographs suggest that the structures responsible for DBP precursors during storm events may not be the same for the two classes of DBPs. The ultraviolet light-absorbing moieties in DOM appear to play major roles in generating DBPs, as evidenced by their strong positive correlations with DBPFPs. Higher correlations with DBPFP for C1 versus C2 suggest that humic-like substances associated with more aromatic and condensed structures have a greater proclivity to generate DBP upon chlorination. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据