4.7 Article

Modeling evapotranspiration by combing a two-source model, a leaf stomatal model, and a light-use efficiency model

期刊

JOURNAL OF HYDROLOGY
卷 501, 期 -, 页码 186-192

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2013.08.006

关键词

Evapotranspiration; Canopy stomatal conductance; Shuttleworth-Wallace model; Ball-Berry model; Remote sensing; SWH model

资金

  1. National Natural Science Foundation of China [40971027]
  2. National Key Research and Development Program [2010CB833501, 2010CB950603]

向作者/读者索取更多资源

Modeling and partitioning ecosystem evapotranspiration (ET) are important in predicting the responses of ecosystem water cycles to global climate change and land use. By incorporating the Ball-Berry stomatal conductance model and a light use efficiency-based gross primary productivity (GPP) model into the Shuttleworth-Wallace model, we developed a new model, SWH, for estimating ET with meteorological data and remote sensing products. Since the new model solved the problem of estimating canopy stomatal conductance, it can be used at sites equipped with meteorological observation systems around the world. Compared with eddy covariance measurements, the SWH model demonstrated satisfactory estimates of ET at a temperate forest and an alpine grassland. Eight meteorological variables and two remote sensing products (i.e., leaf area index, LAI, and enhanced vegetation index, EVI or normalized difference vegetation index, NDVI, or fraction of photosynthetically active radiation, FPAR) are required in our model. This will facilitate estimates of ET and its components, and further elucidate the mechanisms underlying their variations at regional scale. In addition, our model estimates ET and GPP simultaneously, making it convenient to address the coupling of these two key fluxes in terrestrial ecosystems. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据