4.7 Review

Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods

期刊

JOURNAL OF HYDROLOGY
卷 456, 期 -, 页码 12-29

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2012.05.052

关键词

RCM; Bias correction; Downscaling; Hydrology; HBV; Streamflow

资金

  1. FORMAS, the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning [2007-1433]
  2. EU FP6 Integrated Project ENSEMBLES [505539]

向作者/读者索取更多资源

Despite the increasing use of regional climate model (RCM) simulations in hydrological climate-change impact studies, their application is challenging due to the risk of considerable biases. To deal with these biases, several bias correction methods have been developed recently, ranging from simple scaling to rather sophisticated approaches. This paper provides a review of available bias correction methods and demonstrates how they can be used to correct for deviations in an ensemble of 11 different RCM-simulated temperature and precipitation series. The performance of all methods was assessed in several ways: At first, differently corrected RCM data was compared to observed climate data. The second evaluation was based on the combined influence of corrected RCM-simulated temperature and precipitation on hydrological simulations of monthly mean streamflow as well as spring and autumn flood peaks for five catchments in Sweden under current (1961-1990) climate conditions. Finally, the impact on hydrological simulations based on projected future (2021-2050) climate conditions was compared for the different bias correction methods. Improvement of uncorrected RCM climate variables was achieved with all bias correction approaches. While all methods were able to correct the mean values, there were clear differences in their ability to correct other statistical properties such as standard deviation or percentiles. Simulated streamflow characteristics were sensitive to the quality of driving input data: Simulations driven with bias-corrected RCM variables fitted observed values better than simulations forced with uncorrected RCM climate variables and had more narrow variability bounds. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据