4.7 Article

Investigating groundwater flow paths within proglacial moraine using multiple geophysical methods

期刊

JOURNAL OF HYDROLOGY
卷 399, 期 1-2, 页码 57-69

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhydrol.2010.12.036

关键词

Alpine hydrology; Geophysics; Groundwater; Moraine

资金

  1. Alberta Ingenuity Centre for Water Research
  2. Environment Canada
  3. G8 Legacy Chair in Wildlife Ecology
  4. Natural Sciences and Engineering Research Council
  5. Canadian Foundation for Climate and Atmospheric Sciences (IP3 Network)
  6. Swiss National Science Foundation

向作者/读者索取更多资源

Groundwater that is stored and slowly released from alpine watersheds plays an important role in sustaining mountain rivers. Yet, little is known about how groundwater flows within typical alpine geological deposits like glacial moraine, talus, and bedrock. Within the Lake O'Hara alpine watershed of the Canadian Rockies, seasonal snowmelt and rain infiltrates into a large complex of glacial moraine and talus deposits before discharging from a series of springs within a relatively confined area of a terminal moraine deposit. In order to understand the shallow subsurface processes that govern how groundwater is routed through this area, we have undertaken a geophysical study on glacial moraine and bedrock over and around the springs. From interpretations of several seismic refraction, ground-penetrating radar (GPR), and electrical resistivity tomography (ERT) profiles, we delineate the topography of bedrock beneath moraine. Although the bedrock is generally flat under central parts of the terminal moraine, we suggest that an exposed slope of bedrock on its eastern side and a ridge of shallow bedrock imaged by ERT data underneath its western margin serves to channel deep groundwater toward the largest spring. Low-electrical-resistivity anomalies identified on ERT images within shallow parts of the moraine indicate the presence of groundwater flowing over shallow bedrock and/or ice. From coincident seismic refraction, GPR and ERT profiles, we interpret an ca. 5-m-thick deep layer of saturated moraine and fractured bedrock. Despite their relatively small storage volumes, we suggest that groundwater flowing through bedrock cracks may provide an important contribution to stream runoff during low-flow periods. The distinct deep and shallow groundwater flow paths that we interpret from geophysical data reconcile with interpretations from previous analyses of hydrograph and water chemistry data from this same area. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据