4.7 Article

Intercomparison of the total storage deficit index (TSDI) over two Canadian Prairie catchments

期刊

JOURNAL OF HYDROLOGY
卷 374, 期 3-4, 页码 351-359

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2009.06.034

关键词

Canadian Prairie; Drought; GRACE; Soil moisture; TSDI; VIC

资金

  1. Canadian Foundation for Climate and Atmospheric Sciences (CFCAS)

向作者/读者索取更多资源

Retrieval of the terrestrial moisture storage dataset from the Gravity Recovery and Climate Experiment (GRACE) satellite remote sensing system is possible when the catchment of interest is of large spatial scale. These dataset are of paramount importance for the estimation of the total storage deficit index (TSDI), which enables the characterization of a particular drought event from the perspective of the terrestrial moisture storage over that catchment. Incidentally. the GRACE gravity signal over the 13,000 km(2) Upper Assiniboine River Basin on the drought-prone Canadian Prairie is so poor therefore making the computation of the total storage deficit index for this basin infeasible. Consequently, the estimation of the terrestrial moisture storage from other reliable sources becomes imperative in order to enable the computation of the TSDI over this basin. This study explores the utilization of the Variable Infiltration Capacity (VIC) model, a physically based, spatially distributed hydrologic model to simulate the total moisture storage over the Upper Assiniboine River Basin which was then employed in the estimation of the TSDI over this basin for subsequent characterization of the recent Prairie-wide drought. Interestingly, the temporal patterns in the computed TSDI from the VIC model reveal a strong resemblance with the same drought characterization undertaken over the larger adjacent Saskatchewan River Basin, which was accomplished utilizing terrestrial moisture storage from the GRACE-based approach. Additionally, these independent techniques employed in the characterization of the last Prairie drought over the two adjacently situated basins resulted in similar drought severity classification from the standpoint of the total moisture storage deficits over these basins. This study has therefore shown that in the computation of the total storage deficit index over small-scale catchments during anomalous climatic conditions that propagate extreme dryness through the terrestrial hydrologic systems, simulations of the total water storage from a structurally sound model such as the VIC model could be resourceful for the computation of the monthly total storage deficit index if no constraint is placed on the availability of accurate meteorological forcing. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据