4.7 Article

Cross-borehole slug test analysis in a fractured limestone aquifer

期刊

JOURNAL OF HYDROLOGY
卷 348, 期 3-4, 页码 510-523

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2007.10.021

关键词

slug test; cross-borehole; fractured aquifer; inertial effects; fractional flow

向作者/读者索取更多资源

This work proposes new semi-analytical solutions for the interpretation of cross-borehole slug tests in fractured media. Our model is an extension of a previous work by Barker [Barker, J.A., 1988. A generalized radial flow model for hydraulic tests in fractured rock. Water Resources Research 24 (10), 1796-1804; Butter Jr., J.J., Zhan X., 2004. Hydraulic tests in highly permeable aquifers. Water Resources Research 40, W12402. doi:10.1029/2003/WR002998]. It includes inertial effects at both test and observation wells and a fractional flow dimension in the aquifer. The model has five fitting parameters: flow dimension n, hydraulic conductivity K, specific storage coefficient Ss, and effective lengths of test well Le and of observation well Le,. The results of a sensitivity analysis show that the most sensitive parameter is the flow dimension n. The model sensitivity to other parameters may be ranked as follows: K > Le similar to Le(o)) > Ss. The sensitivity to aquifer storage remains one or two orders of magnitude tower than that to other parameters. The model has been coupled to an automatic inversion algorithm for facilitating the interpretation of real field data. This inversion algorithm is based on a Gauss-Newton optimization procedure conditioned by re-scaled sensitivities. It has been used to interpret successfully cross-borehole slug test data from the Hydrogeological Experimental Site (HES) of Poitiers, France, consisting of fractured and karstic limestones. HES data provide flow dimension values ranging between 1.6 and 2.5, and hydraulic conductivity values ranging between 4.4 x 10(-5) and 7.7 x 10(-4) m s(-1). These values are consistent with previous interpretations of single-well slug tests. The results of the sensitivity analysis are confirmed by calculations of relative errors on parameter estimates, which show that accuracy on n and K is below 20% and that on Ss is about one order of magnitude. The K-values interpreted from cross-borehole slug tests are one order of magnitude higher than those previously interpreted from interference pumping tests. These findings suggest that cross-borehole slug tests focus on preferential flowpath networks made by fractures and karstic channels, i.e. the head perturbation induced by a slug test propagates only through those flowpaths with the lowest hydraulic resistance. As a result,

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据