4.4 Article

Improving Streamflow Forecast Lead Time Using Oceanic-Atmospheric Oscillations for Kaidu River Basin, Xinjiang, China

期刊

JOURNAL OF HYDROLOGIC ENGINEERING
卷 18, 期 8, 页码 1031-1040

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)HE.1943-5584.0000707

关键词

Streamflow; Oscillations; Climate change; Forecasting; Rivers and streams; River basins; China; Streamflow; Oscillations; Climate variability; Forecast; Least-square support vector machine (LSSVM); Kaidu River; Xinjiang

资金

  1. State Key Basic Research and Development Program of China [2010CB951002]
  2. Chinese Academy of Sciences [2011T2Z40]
  3. Natural Sciences Foundation of China [40871027]

向作者/读者索取更多资源

Increasing global warming has led to the incremental retreat of glaciers, which in turn affects the water supply of the rivers dependent on glacier melts. This is further affected by the increases in flooding that is attributable to heavy rains during the snowmelt season. An accurate estimation of streamflow is important for water resources planning and management. Therefore, this paper focuses on improving the streamflow forecast for Kaidu River Basin, situated at the north fringe of Yanqi basin on the south slope of the Tianshan Mountains in Xinjiang, China. The interannual and decadal scale oceanic-atmospheric oscillations, i.e.,Pacific decadal oscillation (PDO), North Atlantic oscillation (NAO), Atlantic multidecadal oscillation (AMO), and El Nino-southern oscillation (ENSO), are used to generate streamflow volumes for the peak season (April-October) and the water year, which is from October of the previous year to September of the current year for a period from 1955-2006. A data-driven model, least-square support vector machine (LSSVM), was developed that incorporated oceanic atmospheric oscillations to increase the streamflow lead time. Based on performance measures, predicted streamflow volumes are in agreement with the measured volumes. Sensitivity analyses, performed to evaluate the effect of individual and coupled oscillations, revealed a stronger presence of coupled PDO, NAO, and ENSO indices within the basin. The AMO index shows a pronounced effect when individually compared with the other oscillation modes. Additionally, model-forecasted streamflow is better than that for climatology. Overall, very good streamflow predictions are obtained using the SVM modeling approach. Furthermore, the LSSVM streamflow predictions outperform the predictions obtained from the most widely used feed-forward back-propagation models, artificial neural network, and multiple linear regression. The current paper contributes in improving the streamflow forecast lead time, and identified a coupled climate signal within the basin. The increased lead time can provide useful information to water managers in improving the planning and management of water resources within the Kaidu River Basin. (C) 2013 American Society of Civil Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据