4.4 Article

Impact of Human Activities to Hydrologic Alterations on the Illinois River

期刊

JOURNAL OF HYDROLOGIC ENGINEERING
卷 17, 期 4, 页码 537-546

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)HE.1943-5584.0000465

关键词

Human activity; Illinois River; Hydrologic alteration; Change-point analysis; Indicator of hydrologic alteration

向作者/读者索取更多资源

The Illinois River is a tributary of the Mississippi River that connects Lake Michigan and the Mississippi River. Starting in 1848 when the Illinois and Michigan Canal began to open, the Illinois River has experienced some major human activities such as the Lake Michigan flow diversion, creation of levee and drainage districts on floodplains, and construction of locks and dams on the river. This paper uses Pettitt-Mann-Whitney change-point statistical analysis to identify the hydrologic change points caused by human activities and to quantify hydrologic alterations in the system. Observed stage data from 12 U.S. Army Corps of Engineers gauges and observed flows from three U.S. Geological Survey gauges were used to analyze human effects on hydrologic and hydraulic conditions in the Illinois River. The year 1938 was identified as the change point for low flows and low stages and 1972 as the change point for high flows and high stages. The low flow and stage condition changes were due to a combination of added flow from Lake Michigan, levee and drainage district construction, and construction of locks and dams, whereas the high flow and stage condition changes were due to hydroclimatic change within the Illinois River basin. Analyses based on the Indicators of Hydrologic Alteration (IHA) have shown that the magnitudes, frequency, duration, and number of reversals during low flood conditions were greatly modified by: (1) the construction of locks and dams on the Illinois River that were completed in 1938, (2) the reduction of flow diversion from Lake Michigan, and (3) the hydroclimatic condition change around 1972. The latter change probably contributed to the loss of both soil-moist plants and submerged aquatic plants that once provided several important ecosystem services in the system. The analyses described in this paper, coupled with hydraulic and ecological models, can help with site selection and management plans for the ecosystem restoration of floodplains in regulated rivers. DOI:10.1061/(ASCE)HE.1943-5584.0000465. (C) 2012 American Society of Civil Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据