4.3 Article

LES study of turbulent flows with submerged vegetation

期刊

JOURNAL OF HYDRAULIC RESEARCH
卷 46, 期 3, 页码 307-316

出版社

TAYLOR & FRANCIS LTD
DOI: 10.3826/jhr.2008.3129

关键词

computational fluid dynamics; Large-Eddy-Simulation; Navier-Stoke equations; turbulence modeling; vegetative resistance

向作者/读者索取更多资源

Fully developed turbulent flows with a submerged vegetation are investigated using Large Eddy Simulation (LES), with a focus on understanding the role of the coherent structures on the momentum transfer across the water-plant interface. The LES model results compare reasonably well with laboratory measurements reported in the literature. As with Reynolds-Averaged Navier-Stokes models, LES models effectively simulate the effects of submerged vegetation on the mean flow field, but they also account for the anisotropy of the Reynolds stresses due to the vegetation layer, and resolve coherent structures observed in the instantaneous flow field. Comparisons with fully developed flows in unobstructed (non-vegetated) channels are made to show how the vegetation significantly changes the mean flow, Reynolds shear stress, turbulence intensities, turbulence event frequencies and the energy budget within and above the vegetation layer. LES provides direct visual evidence that coherent structures, namely spanwise vortices (rolls) and streamwise vortices (ribs), develop at the water-plant inter-face at the top of the vegetation due to the well-known Kelvin-Helmholtz instability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据