4.2 Article

Riparian Vegetation Mapping for Hydraulic Roughness Estimation Using Very High Resolution Remote Sensing Data Fusion

期刊

JOURNAL OF HYDRAULIC ENGINEERING
卷 136, 期 11, 页码 855-867

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)HY.1943-7900.0000254

关键词

Flow resistance; Manning; Quickbird; LIDAR; Hydrodynamic modeling; Remote sensing

资金

  1. H2CU

向作者/读者索取更多资源

For detailed hydraulic modeling, accurate spatial information of riparian vegetation patterns needs to be derived in automatic fashion. We propose a supervised classification for heterogeneous riparian corridors with a low number of spectrally separate classes using data fusion of a Quickbird image and LIDAR data. The approach considers nine land cover classes including three woody riparian species, brush, cultivated areas, grassland, urban infrastructures, bare soil and water. The classical stacked vector approach is adopted for data fusion, while the nonparametric weighted feature-extraction method and the pixel-oriented maximum likelihood algorithm are used for feature-reduction and classification purposes, respectively. We test the approach over a 14-km stretch of the Sieve River (Tuscany Region, Italy). A one-dimensional river modeling is applied over the study reach comparing the results of a classification-derived hydraulic roughness map and a traditional ground-based approach. Despite the complex study reach, the classification method produced encouraging accuracies (OKS=0.77) and represents a useful tool to delineate application domains of flow resistance models suited to different hydrodynamic patterns (e.g., stiff/flexible vegetation). Hydraulic modeling results showed that the remotely derived floodplain roughness parameterization captures the equivalent Manning coefficient over 20 test cross sections with uncertainty distributions described by low mean and standard deviation values.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据