4.4 Article

The pattern of natural selection in somatic cancer mutations of human mtDNA

期刊

JOURNAL OF HUMAN GENETICS
卷 55, 期 9, 页码 605-612

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/jhg.2010.76

关键词

cancer; germline mtDNA; mitochondria; selection; somatic mtDNA mutation

向作者/读者索取更多资源

Tumors frequently contain somatic mutations in the mitochondrial DNA (mtDNA). Whether these mutations have a causal function or are merely an effect is still unclear. As tumor formation is a type of somatic evolution, we examine the cancer mutation pattern for consistency with random forces or selection. We also compare the tumor mutation pattern to that observed in the population to gain insight on the mutation process in cancer. Among germline mtDNAs, all genes show strong deficiency in missense changes, reflecting negative selection during human history. In somatic cancer sequences, mtDNA genes show relaxed negative selection relative to germline, or mutation consistent with neutrality. NADH dehydrogenase subunit 3, cytochrome c oxidase subunit 3 and NADH dehydrogenase subunit 4 L in particular show cancer missense mutation rates 9-18 times that of germline. Bootstrap analysis shows cytochrome B to have cancer changes in positions of unusually high conservation, suggesting that tumors select for mutations in residues of high functionality. Strong negative selection was detected in mitochondrially encoded cytochrome c oxidase 1 (MTCO1), suggesting that tumor cells are dependent upon MTCO1 function. Common population polymorphisms were also frequently reported among somatic tumor mutations. The implication of these 'somatic polymorphisms' in tumor growth is discussed. Journal of Human Genetics (2010) 55, 605-612; doi:10.1038/jhg.2010.76; published online 8 July 2010

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据