4.8 Review

Human serum albumin, systemic inflammation, and cirrhosis

期刊

JOURNAL OF HEPATOLOGY
卷 61, 期 2, 页码 396-407

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhep.2014.04.012

关键词

Cirrhosis; Human serum albumin; Paracentesis-induced circulatory dysfunction; Spontaneous bacterial peritonitis; Hepatorenal syndrome; Systemic inflammation; Organ inflammation; Oxidative stress; Decompensated cirrhosis; Acute-on-chronic liver failure

资金

  1. Esther Koplowitz Foundation

向作者/读者索取更多资源

Human serum albumin (HSA) is one of the most frequent treatments in patients with decompensated cirrhosis. Prevention of paracentesis-induced circulatory dysfunction, prevention of type-1 HRS associated with bacterial infections, and treatment of type-1 hepatorenal syndrome are the main indications. In these indications treatment with HSA is associated with improvement in survival. Albumin is a stable and very flexible molecule with a heart shape, 585 residues, and three domains of similar size, each one containing two sub-domains. Many of the physiological functions of HSA rely on its ability to bind an extremely wide range of endogenous and exogenous ligands, to increase their solubility in plasma, to transport them to specific tissues and organs, or to dispose of them when they are toxic. The chemical structure of albumin can be altered by some specific processes (oxidation, glycation) leading to rapid clearance and catabolism. An outstanding feature of HSA is its capacity to bind lipopolysaccharide and other bacterial products (lipoteichoic acid and peptidoglycan), reactive oxygen species, nitric oxide and other nitrogen reactive species, and prostaglandins. Binding to NO and prostaglandins are reversible, so they can be transferred to other molecules at different sites from their synthesis. Through these functions, HSA modulates the inflammatory reaction. Decompensated cirrhosis is a disease associated systemic inflammation, which plays an important role in the pathogenesis of organ or system dysfunction/failure. Although, the beneficial effects of HAS have been traditionally attributed to plasma volume expansion, they could also relate to its effects modulating systemic and organ inflammation. (C) 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据