4.7 Article

Identification of nuclear-enriched miRNAs during mouse granulopoiesis

期刊

JOURNAL OF HEMATOLOGY & ONCOLOGY
卷 7, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1756-8722-7-42

关键词

miRNAs; mRNA targets; Nuclear; Granulopoiesis; Gene expression; Stem cell

资金

  1. Cancer Council NSW
  2. Rebecca L Cooper Medical Research Foundation
  3. National Health and Medical Research Council [571156]
  4. Cure the Future
  5. Ramaciotti Foundation
  6. Cancer Institute of NSW
  7. National Breast Cancer Foundation
  8. National Breast Cancer Foundation [ECF-12-05] Funding Source: researchfish

向作者/读者索取更多资源

Background: MicroRNAs (miRNAs) are coordinators of cellular differentiation, including granulopoiesis. Although differential expression of many miRNAs is associated with the maturation of granulocytes, analysis of differentially expressed miRNAs and their cellular localization across all stages of granulopoiesis, starting from hemopoietic stems cells, is not well characterized. Methods: We analyzed whole cell miRNA and mRNA expression during granulopoiesis using Taqman low-density and Affymetrix arrays respectively. We also performed nuclear and cytoplasmic fractionation followed by Taqman low-density array and/or quantitative PCR to identify nuclear-enriched miRNAs in hemopoietic stem/progenitor cells, promyelocytes, myelocytes, granulocytes and several hemopoietic cell lines. Anti-correlation between the expression of miRNA and target pairs was used to determine putative miRNA targets. Results: Analyses of our array data revealed distinct clusters of differentially expressed miRNAs that are specific to promyelocytes and granulocytes. While the roles of many of these miRNAs in granulopoiesis are not currently known, anti-correlation of the expression of miRNA/mRNA target pairs identified a suite of novel target genes. Clusters of miRNAs (including members of the let-7 and miR-17-92 families) are downregulated in hemopoietic stem/progenitor cells, potentially allowing the expression of target genes known to facilitate stem cell proliferation and homeostasis. Additionally, four miRNAs (miR-709, miR-706, miR-690 and miR-467a*) were found to be enriched in the nucleus of myeloid cells and multiple hemopoietic cell lines compared to other miRNAs, which are predominantly cytoplasmic-enriched. Both miR-709 and miR-706 are nuclear-enriched throughout granulopoiesis and have putative binding sites of extensive complementarity downstream of pri-miRNAs. Nuclear enrichment of miR-467a* is specific to hemopoietic stem/progenitors and promyelocytes. These miRNAs are also nuclear-enriched in other hemopoietic cell lines, where nuclear sequestering may fine-tune the expression of cytoplasmic mRNA targets. Conclusions: Overall, we have demonstrated differentially expressed miRNAs that have not previously been associated with hemopoietic differentiation and provided further evidence of regulated nuclear-enrichment of miRNAs. Further studies into miRNA function in granulocyte development may shed light on fundamental aspects of regulatory RNA biology and the role of nuclear miRNAs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据