4.7 Article

Reactivating aberrantly hypermethylated p15 gene in leukemic T cells by a phenylhexyl isothiocyanate mediated inter-active mechanism on DNA and chromatin

期刊

JOURNAL OF HEMATOLOGY & ONCOLOGY
卷 3, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/1756-8722-3-48

关键词

-

资金

  1. Foundation of Science and Technology of Zhangzhou, Fujian, China [Z07014]
  2. Foundation of Science and Technology of Fujian Medical University, Fujian, China [FZS08018]
  3. Science Research Foundation of Ministry of Health & United Fujian Provincial Health
  4. Education Project for Tackling the Key Research, P.R. China [WKJ2008-2-55]

向作者/读者索取更多资源

Background: We have previously demonstrated that phenylhexyl isothiocyanate (PHI), a synthetic isothiocyanate, inhibits histone deacetylases and remodels chromatins to induce growth arrest in HL-60 myeloid leukemia cells in a concentration-dependent manner. Methods: To investigate the effect of PHI, a novel histone deacetylases inhibitor (HDACi), on demethylation and activation of transcription of p15 in acute lymphoid leukemia cell line Molt-4, and to further decipher the potential mechanism of demethylation, DNA sequencing and modified methylation specific PCR (MSP) were used to screen p15-M and p15-U mRNA after Molt-4 cells were treated with PHI, 5-Aza and TSA. DNA methyltransferase 1 (DNMT1), 3A (DNMT3A), 3B (DNMT3B) and p15 mRNA were measured by RT-PCR. P15 protein, acetylated histone H3 and histone H4 were detected by Western Blot. Results: The gene p15 in Molt-4 cells was hypermethylated and inactive. Hypermethylation of gene p15 was attenuated and p15 gene was activated de novo after 5 days exposure to PHI in a concentration-dependent manner. DNMT1 and DNMT3B were inhibited by PHI (P < 0.05). Alteration of DNMT3A was not significant at those concentrations. Acetylated histone H3 and histone H4 were accumulated markedly after exposure to PHI. Conclusion: PHI could induce both DNA demethylation and acetylated H3 and H4 accumulation in Molt-4 cells. Hypermethylation of gene p15 was reversed and p15 transcription could be reactivated de novo by PHI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据