4.7 Review

P-loop mutations and novel therapeutic approaches for imatinib failures in chronic myeloid leukemia

期刊

JOURNAL OF HEMATOLOGY & ONCOLOGY
卷 1, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1756-8722-1-15

关键词

-

资金

  1. International Scholar Exchange Foundation
  2. New York Medical College
  3. Bristol-Myers Squibb Company

向作者/读者索取更多资源

Imatinib was the first BCR-ABL-targeted agent approved for the treatment of patients with chronic myeloid leukemia (CML) and confers significant benefit for most patients; however, a substantial number of patients are either initially refractory or develop resistance. Point mutations within the ABL kinase domain of the BCR-ABL fusion protein are a major underlying cause of resistance. Of the known imatinib-resistant mutations, the most frequently occurring involve the ATP-binding loop (P-loop). In vitro evidence has suggested that these mutations are more oncogenic with respect to other mutations and wild type BCR-ABL. Dasatinib and nilotinib have been approved for second-line treatment of patients with CML who demonstrate resistance (or intolerance) to imatinib. Both agents have marked activity in patients resistant to imatinib; however, they have differential activity against certain mutations, including those of the P-loop. Data from clinical trials suggest that dasatinib may be more effective vs. nilotinib for treating patients harboring P-loop mutations. Other mutations that are differentially sensitive to the second-line tyrosine kinase inhibitors (TKIs) include F317L and F359I/V, which are more sensitive to nilotinib and dasatinib, respectively. P-loop status in patients with CML and the potency of TKIs against P-loop mutations are key determinants for prognosis and response to treatment. This communication reviews the clinical importance of P-loop mutations and the efficacy of the currently available TKIs against them.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据