4.4 Article Proceedings Paper

Modeling of Ultrafast Phase Change Processes in a Thin Metal Film Irradiated by Femtosecond Laser Pulse Trains

出版社

ASME
DOI: 10.1115/1.4002444

关键词

-

向作者/读者索取更多资源

Ultrashort laser pulses can be generated in the form of a pulse train. In this paper, the ultrafast phase change processes of a 1 mu m free-standing gold film irradiated by femto-second laser pulse trains are simulated numerically. A two-temperature model coupled with interface tracking method is developed to describe the ultrafast melting, vaporization, and resolidification processes. To deal with the large span in time scale, variable time steps are adopted. A laser pulse train consists of several pulse bursts with a repetition rate of 0.5-1 MHz. Each pulse burst contains 3-10 pulses with an interval of 50 ps-10 ns. The simulation results show that with such configuration, to achieve the same melting depth, the maximum temperature in the film decreases significantly in comparison to that of a single pulse. Although the total energy depositing on the film will be lifted, more energy will be transferred into the deeper part, instead of accumulating in the subsurface layer. This leads to lower temperature and temperature gradient, which is favorable in laser sintering and laser machining. [DOI: 10.1115/1.4002444]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据