4.4 Article

CFD-Based Design of Microtubular Solid Oxide Fuel Cells

出版社

ASME
DOI: 10.1115/1.4000709

关键词

computational fluid dynamics; microfluidics; solid oxide fuel cells

向作者/读者索取更多资源

Microtubular solid oxide fuel cells (MT-SOFCs) are interesting for portable and auxiliary power units energy production systems, due to their extremely fast startup time. However, a single cell provides power in the range of 1 W, thus the number of microtubes to reach a kW scale is relevant and packaging design issues arise also. In this paper a specifically developed design procedure is presented to face with system issues and bringing into account fluid-dynamic and thermal influence on system performance. The procedure also simplifies the stack manifold design by means of a modular scale-up procedure starting from a basic optimized configuration. To this aim, a computational fluid dynamics (CFD) model has been integrated with specific models for fuel cell simulation and then validated with tailored experimental data by varying operating conditions in terms of fuel utilization and electric load. A comprehensive three-dimensional (3D) thermal-fluid-dynamic model has then been applied to the analysis of both micro-assembly (i.e., 15 tube assembly) and midi-assembly (up to 45 tubes), showing an important role of local phenomena as current homogeneity and reactant local concentration that have a strong influence on power density and temperature distribution. Microreactor power density in the range of 0.3 kW/l have been demonstrated and a specific manifold design has been realized paving the way toward a modular realization of a 1 kW MT-SOFC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据