4.4 Article

Effects of Variable Viscosity and Thermal Conductivity of CuO-Water Nanofluid on Heat Transfer Enhancement in Natural Convection: Mathematical Model and Simulation

出版社

ASME
DOI: 10.1115/1.4000440

关键词

copper compounds; flow simulation; heat transfer; nanofluidics; natural convection; thermal conductivity; viscosity; water

向作者/读者索取更多资源

Heat transfer enhancement in horizontal annuli using variable thermal conductivity and variable viscosity of CuO-water nanofluid is investigated numerically. The base case of simulation used thermal conductivity and viscosity data that consider temperature property dependence and nanoparticle size. It was observed that for Ra >= 10(4), the average Nusselt number was deteriorated by increasing the volume fraction of nanoparticles. However, for Ra=10(3), the average Nusselt number enhancement depends on aspect ratio of the annulus as well as volume fraction of nanoparticles. Also, for Ra=10(3), the average Nusselt number was less sensitive to volume fraction of nanoparticles at high aspect ratio and the average Nusselt number increased by increasing the volume fraction of nanoaprticles for aspect ratios < 0.4. For Ra >= 10(4), the Nusselt number was deteriorated everywhere around the cylinder surface especially at high aspect ratio. However, this reduction is only restricted to certain regions around the cylinder surface for Ra=10(3). For Ra >= 10(4), the Maxwell-Garnett and the Chon et al. conductivity models demonstrated similar results. But, there was a deviation in the prediction at Ra=10(3) and this deviation becomes more significant at high volume fraction of nanoparticles. The Nguyen et al. data and the Brinkman model give completely different predictions for Ra >= 10(4), where the difference in prediction of the Nusselt number reached 50%. However, this difference was less than 10% at Ra=10(3).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据