4.5 Article

Perfusion decellularization of human and porcine lungs: Bringing the matrix to clinical scale

期刊

JOURNAL OF HEART AND LUNG TRANSPLANTATION
卷 33, 期 3, 页码 298-308

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.healun.2013.10.030

关键词

organ engineering; organ scaffolds; acellular matrix; recellularization; decellularization

资金

  1. United Therapeutics Corporation
  2. National Institutes of Health (NIH) [DP2-OD008749-01]

向作者/读者索取更多资源

BACKGROUND: Organ engineering is a theoretical alternative to allotransplantation for end-stage organ failure. Whole-organ scaffolds can be created by detergent perfusion via the native vasculature, generating an acellular matrix suitable for recellularization with selected cell types. We aimed to up-scale this process, generating biocompatible scaffolds of a clinically relevant scale. METHODS: Rat, porcine, and human lungs were decellularized by detergent perfusion at constant pressures. Collagen, elastin, and glycosaminoglycan content of scaffolds were quantified by colorimetric assays. Proteomic analysis was performed by microcapillary liquid chromatography tandem mass spectrometry. Extracellular matrix (ECM) slices were cultured with human umbilical vein endothelial cells (HUVEC), small airway epithelial cells (SAEC), or pulmonary alveolar epithelial cells (PAECs) and evaluated by time-lapse live cell microscopy and MTT (3[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay. Whole-organ culture was maintained under constant-pressure media perfusion after seeding with PAECs. RESULTS: Rat lungs were decellularized using: (1) sodium dodecyl sulfate (SDS), (2) sodium deoxycholate (SDC), or (3) 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). Resulting scaffolds showed comparable loss of DNA but greatest preservation of ECM components in SDS-decellularized lungs. Porcine (n = 10) and human (n = 7) lungs required increased SDS concentration, perfusion pressures, and time to achieve decellularization as determined by loss of DNA, with preservation of intact matrix composition and lung architecture. Proteomic analysis of human decellularized lungs further confirmed ECM preservation. Recellularization experiments confirmed scaffold biocompatibility when cultured with mature cell phenotypes and scaffold integrity for the duration of biomimetic culture. CONCLUSIONS: SDS-based perfusion decellularization can be applied to whole porcine and human lungs to generate biocompatible organ scaffolds with preserved ECM composition and architecture. (C) 2014 International Society for Heart and Lung Transplantation. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据