4.7 Article

Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 270, 期 -, 页码 1-10

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2014.01.031

关键词

GO-NH2; Membrane; Cobalt; Adsorption; Thermodynamics; Kinetics

资金

  1. National Key Scientific Program-Nanoscience and Nanotechnology [2011CB933700]
  2. National Natural Science Foundation of China [21177131, 61273066, 11205204, 21105001, 21077106, 61104205]
  3. China Postdoctoral Science Foundation funded project [20110490834]

向作者/读者索取更多资源

A newly designed amination graphene oxide (GO-NH2), a superior adsorption capability to that of activated carbon, was fabricated by graphene oxide (GO) combining with aromatic diazonium salt. The resultant GO-NH2 maintained a high surface area of 320 m(2)/g. When used as an adsorbent, the GO-NH2 demonstrated a very quick adsorption property for the removal of Co(II) ions, more than 90% of Co(II) ions could be removed within 5 min for dilute solutions at 0.3 g/L adsorbent dose. The adsorption capability approaches 116.35 mg/g, which is one of the highest capabilities of today's materials. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that the Co(II) ions adsorption on GO-NH2 was a spontaneous process. Considering the superior adsorption capability, the GO-NH2 filter membrane was fabricated for the removal of Co(II) ions. Membrane filtration experiments revealed that the removal capabilities of the materials for cobalt ions depended on the membrane's thickness, flow rate and initial concentration of Co(II) ions. The highest percentage removal of Co(II) exceeds 98%, indicating that the GO-NH2 is one of the very suitable membrane materials in environmental pollution management. (C) 2014 Elsevier BM. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据