4.7 Article

Immobilization of tyrosinase on modified diatom biosilica: Enzymatic removal of phenolic compounds from aqueous solution

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 244, 期 -, 页码 528-536

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2012.10.041

关键词

Diatoms; Modification; Tyrosinase; Enzyme immobilization; Phenolic compounds; Biodegradation

向作者/读者索取更多资源

Acid and plasma treated diatom-biosilica particles, were modified with 3-aminopropyl triethoxysilane (APTES), and activated with glutaraldehyde. Then, tyrosinase was immobilized onto the pre-activated biosilica by covalent bonding. The biosilica properties were determined using SEM, and FTIR. The enzyme system has been characterized as a function of pH, temperature and substrate concentration. Optimum pH of the free and immobilized enzyme was found to be pH 7.0. Optimum temperatures of the free and immobilized enzymes were determined as 35 and 45 degrees C respectively. The biodegradation of phenolic compounds (i.e., phenol, para-cresol and phenyl acetate) has been studied by means of immobilized tyrosinase in a batch system. The immobilized tyrosinase retained about 74% of its original activity after 10 times repeated use in the batch system. Moreover, the storage stability of the tyrosinase-biosilica system resulted excellent, since they maintained more than 67% of the initial activity after eighth week storage. Highly porous structure of biosilica can provide large surface area for immobilization of high quantity enzyme. The porous structure of the biosilica can decrease diffusion limitation both substrate phenols and their products. Finally, the immobilized tyrosinase was used in a batch system for degradation of three different phenols. (c) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据