4.7 Article

Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 201, 期 -, 页码 178-184

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2011.11.067

关键词

Arsenic; Sporosarcina ginsengisoli; Microbial calcite; Bioremediation

资金

  1. Chinese Academy of Sciences [KZCX2-YW-335, 2010Y2ZB04]
  2. National Natural Science Foundation of China [U1120302, 41150110154, 40673070, 40872169]

向作者/读者索取更多资源

Arsenic is a highly toxic metalloid and has posed high risk to the environment. As(III) is highly mobile in soil and leached easily into groundwater. The current remediation techniques are not sufficient to immobilize this toxic element. In the present study, an As(III) tolerant bacterium Sporosarcina ginsengisoli CR5 was isolated from As contaminated soil of Urumqi, China. We investigated the role of microbial calcite precipitated by this bacterium to remediate soil contaminated with As(III). The bacterium was able to grow at high As(III) concentration of 50 mM. In order to obtain arsenic distribution pattern, five stage soil sequential extraction was carried out. Arsenic mobility was found to significantly decrease in the exchangeable fraction of soil and subsequently the arsenic concentration was markedly increased in carbonated fraction after bioremediation. Microbially induced calcite precipitation (MICP) process in bioremediation was further confirmed by ATR-FTIR and XRD analyses. XRD spectra showed presence of various biomineralization products such as calcite, gwihabaite, aragonite and vaterite in bioremediated soil samples. The results from this study have implications that MICP based bioremediation by S. ginsengisoli is a viable, environmental friendly technology for remediation of the arsenic contaminated sites. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据