4.7 Article

Ammonium thiosulphate enhanced phytoextraction from mercury contaminated soil - Results from a greenhouse study

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 186, 期 1, 页码 119-127

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2010.10.097

关键词

Ammonium thiosulphate; Mercury contaminated soil; Phytoextraction; Fractionation; Environmental risk

资金

  1. National High-tech Research and Development Program of China [2008AA06Z335]

向作者/读者索取更多资源

According to the 'hard and soft' acid-base principle, mercury is a 'soft metal' and will preferentially form soluble chemical complexes with sulphur-containing ligands. In this work mercury uptake by Chenopodium glaucum L growing on mercury-contaminated soil was promoted using ammonium thiosulphate. The relative geochemical fractionation of mercury in the soil was subsequently investigated as a function of plant growth with and without thiosulphate amendment. The results indicate that the solubility of mercury is significantly increased through the application of thiosulphate to the soil. Substantially higher mercury levels were found in C. glaucum L treated with 2 g kg(-1) thiosulphate of soil when compared to the non-treated plants. Compared with initial soil, soluble and exchangeable fractions were increased both in planted and planted treated plants. However, no significant difference was observed between the soils of the planted and planted treated plants. The oxide-bound mercury concentration was significantly decreased for the planted soil (treated and non-treated) at the end of the experiment. Moreover, this fraction was highly correlated with the plant tissue mercury concentration. Taken together, thiosulphate assisted phytoextraction could be used to reduce environmental risk apparent for mercury-contaminated soil through reducing the oxide bound fractions, while managing the bioavailable fractions (compared with no treated plant). (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据