4.7 Article

Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 194, 期 -, 页码 162-168

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2011.07.076

关键词

Carbon nanosphere; Silver; Adsorption; Sodium hydroxide; Surface activation

资金

  1. Environment and Water Industry Programme Office (EWI) - National Research Foundation Singapore [0802-IRIS-12]
  2. Ministry of Education, Singapore [RG54/05]
  3. Nanyang Technological University

向作者/读者索取更多资源

We report the synthesis and activation of colloidal carbon nanospheres (CNS) for adsorption of Ag(I) ions from aqueous solutions. CNS (400-500 nm in diameter) was synthesized via simple hydrothermal treatment of glucose solution. The surface of nonporous CNS after being activated by NaOH was enriched with -OH and -COO- functional groups. Despite the low surface area (<15 m(2)/g), the activated CNS exhibited a high adsorption capacity of 152 mg silver/g. Under batch conditions, all Ag(I) ions can be completely adsorbed in less than 6 min with the initial Ag(I) concentrations lower than 2 ppm. This can be attributed to the minimum mass transfer resistance as Ag(I) ions were all deposited and reduced as Ag-0 nanoparticles on the external surface of CNS. The kinetic data can be well fitted to the pseudo-second-order kinetics model. The adsorbed silver can be easily recovered by dilute acid solutions and the CNS can be reactivated by the same treatment with NaOH solution. The excellent adsorption performance and reusability have also been demonstrated in a continuous mode. The NaOH activated CNS reported here could represent a new type of low-cost and efficient adsorbent nanomaterials for removal of trace Ag(I) ions for drinking water production. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据