4.7 Article

Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 157, 期 2-3, 页码 587-598

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2008.01.053

关键词

geopolymer; aluminosilicate; immobilization; lead; cadmium; chromium

资金

  1. Special Research Centre of the Australian Research Council
  2. The China Scholarship Council

向作者/读者索取更多资源

Alkali activation of fly ash by sodium silicate solutions, forming geopolymeric binders, provides a potential means of treating wastes containing heavy metals. Here, the effects on geopolymer structure of contamination of geopolymers by Cr(VI), Cd(II) and Pb(II) in the forms of various nitrate and chromate salts are investigated. The addition of soluble salts results in a high extent of dispersal of contaminant ions throughout the geopolymer matrix, however very little change in geopolymer structure is observed when these materials are compared to their uncontaminated counterparts. Successful immobilization of these species will rely on chemical binding either into the geopolymer gel or into other low-solubility (silicate or aluminosilicate) phases. In the case of Pb, the results of this work tentatively support a previous identification of Pb3SiO5 as a potential candidate phase for hosting Pb(II) within the geopolymer structure, although the data are not entirely conclusive. The addition of relatively low levels of heavy metal salts is seen to have little effect on the compressive strength of the geopolymeric material, and in some cases actually gives an increase in strength. Sparingly soluble salts may undergo some chemical conversion due to the highly alkaline conditions prevalent during geopolymerization, and in general are trapped in the geopolymer matrix by a simple physical encapsulation mechanism. Lead is in general very effectively immobilized in geopolymers, as is cadmium in all except the most acidic leaching environments. Hexavalent chromium is problematic, whether added as a highly soluble salt or in sparingly soluble form. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据