4.6 Article

Flight-test results of autonomous airplane transitions between steady-level and hovering flight

期刊

JOURNAL OF GUIDANCE CONTROL AND DYNAMICS
卷 31, 期 2, 页码 358-370

出版社

AMER INST AERONAUT ASTRONAUT
DOI: 10.2514/1.29261

关键词

-

向作者/读者索取更多资源

Linear systems can be used to adequately model and control an aircraft in either ideal steady-level flight or in ideal hovering flight. However, constructing a single unified system capable of adequately modeling or controlling an airplane in steady-level flight and in hovering flight, as well as (luring the highly nonlinear transitions between the two, requires the use of more complex systems, such as scheduled-linear, nonlinear, or stable adaptive systems. This paper discusses the use of dynamic inversion with real-time neural network adaptation as a means to provide a single adaptive controller capable of controlling a fixed-wing unmanned aircraft system in all three flight phases: steady-level flight, hovering flight, and the transitions between them. Having a single controller that can achieve and transition between steady-level and hovering flight allows utilization of the entire low-speed flight envelope, even beyond stall conditions. This method is applied to the GTEdge, an eight-foot wingspan, fixed-wing unmanned aircraft system that has been fully instrumented for autonomous flight. This paper presents data from actual flight-test experiments in which the airplane transitions from high-speed, steady-level flight into a hovering condition and then back again.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据