4.5 Article

Cutting ellipses from area-minimizing rectangles

期刊

JOURNAL OF GLOBAL OPTIMIZATION
卷 59, 期 2-3, 页码 405-437

出版社

SPRINGER
DOI: 10.1007/s10898-013-0125-3

关键词

Global optimization; Non-convex nonlinear programming; Mixed integer programming; Cutting stock problem; Packing problem; Shape constraints; Non-overlap constraints; Design problem; Polylithic solution approach; Computational geometry

向作者/读者索取更多资源

A set of ellipses, with given semi-major and semi-minor axes, is to be cut from a rectangular design plate, while minimizing the area of the design rectangle. The design plate is subject to lower and upper bounds of its widths and lengths; the ellipses are free of any orientation restrictions. We present new mathematical programming formulations for this ellipse cutting problem. The key idea in the developed non-convex nonlinear programming models is to use separating hyperlines to ensure the ellipses do not overlap with each other. For small number of ellipses we compute feasible points which are globally optimal subject to the finite arithmetic of the global solvers at hand. However, for more than 14 ellipses none of the local or global NLP solvers available in GAMS can even compute a feasible point. Therefore, we develop polylithic approaches, in which the ellipses are added sequentially in a strip-packing fashion to the rectangle restricted in width, but unrestricted in length. The rectangle's area is minimized in each step in a greedy fashion. The sequence in which we add the ellipses is random; this adds some GRASP flavor to our approach. The polylithic algorithms allow us to compute good, near optimal solutions for up to 100 ellipses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据