4.4 Article

Ice growth in a spherical cavity of a porous medium

期刊

JOURNAL OF GLACIOLOGY
卷 56, 期 196, 页码 271-277

出版社

INT GLACIOL SOC
DOI: 10.3189/002214310791968494

关键词

-

向作者/读者索取更多资源

We consider an idealized problem of a sphere of ice growing symmetrically in a spherical cavity within a porous rock in order to identify and quantify different physical mechanisms that can result in fracturing the rock. We show that if the permeability of the rock is very small then high pressures can develop in the cavity as the water inside it expands on freezing. However, given typical permeabilities of most rocks, the pressure is relieved by flow out of the cavity through the rock pores. When ice fills the cavity, there remains a microscopic film of water separating the ice from the rock, owing to disjoining forces, and these forces can stress the rock and have the potential to fracture it. The elastic pressure in the rock depresses the freezing temperature, which can limit the potential for fracturing. This simple example reveals the important interactions between disjoining forces, elasticity and fluid flow in determining the pressure exerted during freezing of water-saturated cavities in rocks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据