4.5 Article

Bayesian Framework for Characterizing Geotechnical Model Uncertainty

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)GT.1943-5606.0000018

关键词

-

资金

  1. Research Grants Council (RGC) of the Hong Kong [620206]
  2. National Natural Science Foundation of China [N-HKUST611/03]

向作者/读者索取更多资源

As any model is only an abstraction of the real world, model uncertainty always exists. The magnitude of model uncertainty is important for geotechnical decision making. If model uncertainty is not considered, the geotechnical predictions and hence the decisions based on the geotechnical predictions might be biased. In this study, a framework for characterizing geotechnical model uncertainty using observation data is proposed. The framework is based on the concept of multivariable Bayesian updating, in which the statistics of model uncertainty are updated using observed performance data. Uncertainties in both input parameters and observed data can be considered in the proposed framework. To bypass complex computational works involved in the proposed framework, a practical approximate solution is presented. The proposed framework is illustrated by characterizing the model uncertainty of four limit equilibrium methods for slope stability analysis using quality centrifuge test data. Parametric study in the illustrative example shows that both quality and quantity of the performance data could affect the determination of the model uncertainty, and that such effects can be systematically quantified with the proposed method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据