4.5 Article

Simplified plane-strain modeling of stone-column reinforced ground

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)1090-0241(2008)134:2(185)

关键词

-

向作者/读者索取更多资源

The acceleration of consolidation rate by stone columns was mostly analyzed within the framework of a basic unit cell (i.e., a cylindrical soil body around a column). A method of converting the axisymmetric unit cell into the equivalent plane-strain model would be required for two-dimensional numerical modeling of multicolumn field applications. This paper proposes two simplified conversion methods to obtain the equivalent plane-strain model of the unit cell, and investigates their applicability to multicolumn reinforced ground. In the first conversion method, the soil permeability is matched according to an analytical equation, whereas in the second method, the column width is matched based on the equivalence of column area. The validity of these methods is tested by comparison with the numerical results of unit-cell simulations and with the field data from an embankment case history. The results show that for the case of linear-elastic material modeling, both methods produce reasonably accurate long-term consolidation settlements, whereas for the case of elastoplastic material modeling, the second method is preferable as the first one gives erroneously lower long-term settlements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据