4.5 Article

Characterization of cemented sand by experimental and numerical investigations

期刊

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)1090-0241(2008)134:7(992)

关键词

-

向作者/读者索取更多资源

In this study, the effects of cementation on the stress-dilatancy and strength of cemented sand are investigated through experimental characterizations using triaxial tests and numerical simulations using the discrete element method. At small strains, dilatancy is hindered by the intact bonding network that produces a web-patterned force chain. After yielding, the increase in the dilatancy accelerates. Two competing but intimately related processes determine the peak strength: Bond breakages cause a strength reduction but the associated dilatancy leads to a strength increase. This finding and the experimental observation that the dilatancy at the peak state increases with increasing cement content explain why the measured peak-state strength parameters, c' and phi(p)', are relevant to the cement content. With increasing strain, the force-chain distribution gradually changes to a thick columnar shape, which mostly appears inside the shear band. At the ultimate state, the cementing bonds remain to form clusters, even within the shear band. The existence of clusters not only helps maintain the overall volumetric dilation but also prevents force-chain buckling, which in turn increases the associated strength.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据