4.5 Article

Capacity, settlement, and energy dissipation of shallow footings subjected to rocking

期刊

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)1090-0241(2008)134:8(1129)

关键词

-

向作者/读者索取更多资源

The effectiveness of structural fuse mechanisms used to improve the performance of buildings during seismic loading depends on their capacity, ductility, energy dissipation, isolation, and self-centering characteristics. Although rocking shallow footings could also be designed to possess many of these desirable characteristics, current civil engineering practice often avoids nonlinear behavior of soil in design, due to the lack of confidence and knowledge about cyclic rocking. Several centrifuge experiments were conducted to study the rocking behavior of shallow footings, supported by sand and clay soil stratums, during slow lateral cyclic loading and dynamic shaking. The ratio of the footing area to the footing contact area required to support the applied vertical loads (A/A(c)), related to the factor of safety with respect to vertical loading, is correlated with moment capacity, energy dissipation, and permanent settlement measured in centrifuge and 1 g model tests. Results show that a footing with large A/A(c) ratio (about 10) possesses a moment capacity that is insensitive to soil properties, does not suffer large permanent settlements, has a self-centering characteristic associated with uplift and gap closure, and dissipates seismic energy that corresponds to about 20% damping ratio. Thus, there is promise to use rocking footings in place of, or in combination with, structural base isolation and energy dissipation devices to improve the performance of the structure during seismic loading.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据