4.3 Article

Climate impacts of ice nucleation

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2012JD017950

关键词

-

资金

  1. U.S. National Science Foundation
  2. Aviation Climate Change Research Initiative (ACCRI) [DTRT57-10-C-10012]
  3. NASA Modeling Analysis and Prediction program [NNX09AJ05G, WBS 802678.02.17.01.07]
  4. US NSF/DOE/USDA Decadal and Regional Climate Prediction using Earth System Models (EaSM) program
  5. NASA [NNX09AJ05G, 116027] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (-0.06 Wm(-2)) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm(-2). Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 +/- 0.10 Wm(-2) (1 sigma uncertainty). This represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of -1.6 Wm(-2).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据