4.3 Article

Revealing highly complex elastic nonlinear (anelastic) behavior of Earth materials applying a new probe: Dynamic acoustoelastic testing

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011JB009127

关键词

-

资金

  1. U.S. Department of Energy, Office of Basic Energy Research

向作者/读者索取更多资源

Recent work in medical nonlinear acoustics has led to the development of refined experimental method to measure material elastic nonlinear (anelastic) response. The technique, termed dynamic acoustoelastic testing, has significant implications for the development of a physics-based theory because it provides information that existing methods cannot. It provides the means to dynamically study the velocity-strain and attenuation-strain relations through the full wave cycle in contrast to most methods that measure average response. The method relies on vibrating a sample at low frequency in order to cycle it through different levels of stress-strain. Simultaneously, an ultrasonic source applies pulses and the change in wave speed and attenuation as a function of the low frequency strain is measured. We report preliminary results in eleven room-dry rock samples. In crystalline rock, we expect that the elastic nonlinearity arises from the microcracks and dislocations contained within individual crystals. In contrast, sedimentary rocks may have other origins of elastic nonlinearity, currently under debate. A large quadratic elastic nonlinearity is observed in Berkeley blue granite, presumably due to microcracks and dislocation-point defect interactions. In sedimentary rocks that include limestones and sandstones we observe behaviors that can differ markedly from the granite, potentially indicating different mechanical mechanisms. We further observe changes in measured nonlinear coefficients that are wave-strain amplitude dependent. Ultimately we hope that the new approach will provide the means to quantitatively relate material nonlinear elastic behavior to the responsible features, that include soft bonds dislocations, microcracks, and the modulating influences of water content, temperature and pressure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据