4.3 Article

Solar wind alpha particles and heavy ions in the inner heliosphere observed with MESSENGER

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2012JA017829

关键词

-

资金

  1. NASA Discovery Program [NAS5-97271]
  2. NASA Graduate Student Research Program [NNX09AL50H]
  3. National Science Foundation [AGS-1043012]
  4. [NASW-00002]

向作者/读者索取更多资源

The Fast Imaging Plasma Spectrometer (FIPS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has made the first in situ measurements of solar wind plasma in the inner heliosphere since the Helios 1 and 2 spacecraft in the 1980s. Although the core of the solar wind velocity distribution is obstructed by the spacecraft sunshade, a data analysis technique has been developed that recovers both bulk and thermal speeds to 10% accuracy and provides the first measurements of solar wind heavy ions (mass per charge >2 amu/e) at heliocentric distances within 0.5 AU. Solar wind alpha particles and heavy ions appear to have similar mean flow speeds at values greater than that of the protons by approximately 70% of the Alfven speed. From an examination of the thermal properties of alpha particles and heavier solar wind ions, we find a ratio of the temperature of alpha particles to that of protons nearly twice that of previously reported Helios observations, though still within the limits of excessive heating of heavy ions observed spectroscopically close to the Sun. Furthermore, examination of typical magnetic power spectra at the orbits of MESSENGER and at 1 AU reveals the lack of a strong signature of local resonant ion heating, implying that a majority of heavy ion heating could occur close to the Sun. These results demonstrate that the solar wind at similar to 0.3 AU is a blend of the effects of wave-particle interactions occurring in both the solar corona and the heliosphere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据