4.3 Article

The physical basis for anomalous diffusion in bed load transport

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011JF002075

关键词

-

资金

  1. National Center for Earth-surface Dynamics [NSF EAR 0120914]
  2. National Science Foundation

向作者/读者索取更多资源

Recent studies have observed deviation from normal (Fickian) diffusion in sediment tracer dispersion that violates the assumption of statistical convergence to a Gaussian. Nikora et al. (2002) hypothesized that particle motion at short time scales is superdiffusive because of inertia, while long-time subdiffusion results from heavy-tailed rest durations between particle motions. Here we test this hypothesis with laboratory experiments that trace the motion of individual gravels under near-threshold intermittent bed load transport (0.027 < tau* < 0.087). Particle behavior consists of two independent states: a mobile phase, in which indeed we find superdiffusive behavior, and an immobile phase, in which gravels distrained from the fluid remain stationary for long durations. Correlated grain motion can account for some but not all of the superdiffusive behavior for the mobile phase; invoking heterogeneity of grain size provides a plausible explanation for the rest. Grains that become immobile appear to stay at rest until the bed scours down to an elevation that exposes them to the flow. The return time distribution for bed scour is similar to the distribution of rest durations, and both have power law tails. Results provide a physical basis for scaling regimes of anomalous dispersion and the time scales that separate these regimes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据