4.3 Article

Direct covariance measurement of CO2 gas transfer velocity during the 2008 Southern Ocean Gas Exchange Experiment: Wind speed dependency

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011JC007022

关键词

-

资金

  1. National Science Foundation [0647475]
  2. National Oceanic and Atmospheric Administration [NA07OAR4310084]
  3. NOAA Office of Climate Observations
  4. Directorate For Geosciences
  5. Division Of Ocean Sciences [0647475] Funding Source: National Science Foundation

向作者/读者索取更多资源

Direct measurements of air-sea heat, momentum, and mass (including CO2, DMS, and water vapor) fluxes using the direct covariance method were made over the open ocean from the NOAA R/V Ronald H. Brown during the Southern Ocean Gas Exchange (SO GasEx) program. Observations of fluxes and the physical processes associated with driving air-sea exchange are key components of SO GasEx. This paper focuses on the exchange of CO2 and the wind speed dependency of the transfer velocity, k, used to model the CO2 flux between the atmosphere and ocean. A quadratic dependence of k on wind speed based on dual tracer experiments is most frequently encountered in the literature. However, in recent years, bubble-mediated enhancement of k, which exhibits a cubic relationship with wind speed, has emerged as a key issue for flux parameterization in high-wind regions. Therefore, a major question addressed in SO GasEx is whether the transfer velocities obey a quadratic or cubic relationship with wind speed. After significant correction to the flux estimates (primarily due to moisture contamination), the direct covariance CO2 fluxes confirm a significant enhancement of the transfer velocity at high winds compared with previous quadratic formulations. Regression analysis suggests that a cubic relationship provides a more accurate parameterization over a wind speed range of 0 to 18 m s(-1). The Southern Ocean results are in good agreement with the 1998 GasEx experiment in the North Atlantic and a recent separate field program in the North Sea.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据