4.3 Article

Present-day kinematics of active mountain building in Taiwan from GPS observations during 1995-2005

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2010JB008058

关键词

-

资金

  1. Taiwan NSC [99-2116-M-006-020]

向作者/读者索取更多资源

We characterize the kinematics of modern crustal deformation in Taiwan and evaluate the potential for large earthquakes by computing tectonic block motions and fault slip rates from 531 GPS horizontal velocities. These new GPS velocity field indicates that lateral extrusion in the southern transition from collision to subduction is primarily achieved by motion along several major reverse faults and internal distortion of blocks. The northern transition is characterized by asymmetric opening of the Okinawa trough and collision-induced rotation between the Ryukyu trench and Okinawa trough. We suggest that the differences in style of deformation in northern and southern Taiwan are a result of differences in trenchward motions between the overriding plate and forearc sliver. Along-strike variations in basin thickness and the presence of foreland basement obstacles in central Taiwan result in clockwise rotation with sinistral motion on faults and counterclockwise rotation with dextral motion on faults north and south of the obstacle, respectively. In eastern Taiwan, high slip rate of similar to 43 mm/yr on the southern Longitudinal Valley fault (LVF) is responsible for the full collision of Taiwan orogeny. E-W syn-orogenic extension in the southern Central Range has been inferred by our model. Patches with high slip rate deficits on the LVF and the Chelungpu fault from our model, respectively, mainly correspond to the source areas of the 1951 M 7.1 Longitudinal Valley earthquake sequence and of the 1999 M-w 7.6 Chi-Chi earthquake.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据