4.3 Article

Wave-mud interaction over the muddy Atchafalaya subaqueous clinoform, Louisiana, United States: Wave processes

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2010JC006644

关键词

-

资金

  1. Office of Naval Research [N00014-07-1-0448, N00014-08-1-0598]

向作者/读者索取更多资源

Observations of wave and sediment processes collected at two locations on the Atchafalaya inner shelf show that wave dissipation in shallow, muddy environments is strongly coupled to bed-sediment reworking by waves. During an energetic wave event (2 m significant wave height in 5 m water depth), acoustic backscatter records suggest that sediment in the surficial bed layer evolves from consolidated mud through liquefaction, fluid mud formation, and hindered settling to gelled, under-consolidated mud. Net swell dissipation increases steadily during the storm from negligible prestorm values, consistent with bed softening, but shows no correlation with detectable fluid mud layers. Remarkably, the maximum dissipation rate occurs poststorm, when no fluid mud layers are present. In the waning stage of the storm, the contribution of different wave-forcing processes to wave dissipation is analyzed using an inverse modeling approach based on a nonlinear three-wave interaction model. Although wave-mud interaction dominates dissipative processes, nonlinear three-wave interactions control the shape of the frequency distribution of the dissipation rate. In the wake of the storm, the viscosity values predicted by the inverse modeling converge toward measured values characteristic for gelled mud in a trend that is consistent with a fluid mud entering dewatering and consolidation stages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据