4.3 Article

Proton core-beam system in the expanding solar wind: Hybrid simulations

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011JA016940

关键词

-

资金

  1. Czech grants [GAAV IAA300420702, AV0Z30420517]
  2. European Space Agency [98068]
  3. European Commission [263340]

向作者/读者索取更多资源

Results of a two-dimensional hybrid expanding box simulation of a proton beam-core system in the solar wind are presented. The expansion with a strictly radial magnetic field leads to a decrease of the ratio between the proton perpendicular and parallel temperatures as well as to an increase of the ratio between the beam-core differential velocity and the local Alfven velocity creating a free energy for many different instabilities. The system is indeed most of the time marginally stable with respect to the parallel magnetosonic, oblique Alfven, proton cyclotron and parallel fire hose instabilities which determine the system evolution counteracting some effects of the expansion and interacting with each other. Nonlinear evolution of these instabilities leads to large modifications of the proton velocity distribution function. The beam and core protons are slowed with respect to each other and heated, and at later stages of the evolution the two populations are not clearly distinguishable. On the macroscopic level the instabilities cause large departures from the double adiabatic prediction leading to an efficient isotropization of effective proton temperatures in agreement with Helios observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据