4.3 Article

Improving simulations of the upper ocean by inclusion of surface waves in the Mellor-Yamada turbulence scheme

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2010JC006320

关键词

-

资金

  1. National Natural Science Foundation of China [40806017, 40730842]
  2. National Basic Research Program of China (973 Program) [2010CB950501]
  3. NSF
  4. MMS
  5. NOAA

向作者/读者索取更多资源

The Mellor-Yamada turbulence closure scheme, used in many ocean circulation models, is often blamed for overly high simulated surface temperature and overly low simulated subsurface temperature in summer due to insufficient vertical mixing. Surface waves can enhance turbulence kinetic energy and mixing of the upper ocean via wave breaking and nonbreaking-wave-turbulence interaction. The influences of wave breaking and wave-turbulence interaction on the Mellor-Yamada scheme and upper ocean thermal structure are examined and compared with each other using one-dimensional and three-dimensional ocean circulation models. Model results show that the wave-turbulence interaction can effectively amend the problem of insufficient mixing in the classic Mellor-Yamada scheme. The behaviors of the Mellor-Yamada scheme, as well as the simulated upper ocean thermal structure, are significantly improved by adding a turbulence kinetic energy production term associated with wave-turbulence interaction. In contrast, mixing associated with wave breaking alone seems insufficient to improve significantly the simulations as its effect is limited to the very near-surface layers. Therefore, the effects of wave-turbulence interaction on the upper ocean are much more important than those of wave breaking.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据