4.3 Article

Space-time cascades and the scaling of ECMWF reanalyses: Fluxes and fields

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011JD015654

关键词

-

资金

  1. NOAA Climate Diagnostic Center
  2. Cooperative Institute for Research in Environmental Sciences (CIRES)

向作者/读者索取更多资源

We consider the space-time scaling properties of the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis products for the wind (u, v, w), humidity (h(s)), temperature (T), and geopotentials (z) and their corresponding turbulent fluxes using the daily 700 mbar products for the year 2006. Following previous studies on T, h(s), and u, we show that that the basic predictions of multiplicative cascade models are well respected over space-time scales below similar to 5000 km, shorter than similar to 5-10 days providing precise scale by scale determination of the reanalysis statistical properties (needed for example for stochastic parameterizations in ensemble forecasting systems). We innovate by including the meridional and vertical wind components (v, w) and geopotential (z), and by considering their horizontal anisotropies, their latitudinal variations and, perhaps most importantly, by directly analyzing the fields (not just fluxes). Whereas the fluxes have nearly isotropic exponents in space-time with little latitudinal variation (displaying only scale independent trivial anisotropy), the fields have significant scaling horizontal anisotropies. These complicate the interpretation of standard isotropic spectra and are likely to be artifacts. Many of the new (nonconservation) exponents (H) are nonstandard and currently have no adequate theoretical explanation although the key horizontal wind and temperature H exponents may be consequences of horizontal Kolmogorov scaling, combined with sloping isobaric surfaces. In time the scaling is broken at around 5-10 days, i.e., roughly the lifetime of planetary structures; lower frequencies are spectrally flatter: the spectral plateau, weather-low-frequency weather regime.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据